

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: VARIOUS		
QUALIFICATION CODE: VARIOUS	LEVEL: 6	
COURSE NAME: PHYSICAL CHEMISTRY	COURSE CODE: PCH602S	
SESSION: NOVEMBER 2019	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	Prof Habauka M Kwaambwa
MODERATOR:	Prof Rajaram Swaminathan

INSTRUCTIONS		
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENT

List of Useful Constants

THIS QUESTION PAPER CONSISTS OF 7 PAGES (Including this front page and attachment)

There are 10 questions in this section. Choose the correct answer. Each question carries 2 marks.

- 1. An ideal gas at 27°C is heated at constant pressure until its volume is double. The final temperature is:
 - A. 54°C
 - B. 327°C
 - C. 108°C
 - D. 654°C
 - E. 600°C
- 2. Which of the following is not an intensive property?
 - A. Pressure
 - B. Temperature
 - C. Density
 - D. Heat
 - E. Molar volume
- 3. If a gas is heated against a constant pressure, keeping the volume constant, then work done will be
 - A. Positive
 - B. Negative
 - C. Zero
 - D. Infinity
 - E. Anywhere between zero and infinity
- 4. Which one of the following is always positive when a spontaneous process occurs?
 - A. ΔS_{system}
 - B. ΔS_{surrounding}
 - C. $\Delta S_{universe}$
 - D. $\Delta H_{universe}$
 - E. ΔH_{surrounding}
- 5. The efficiency of a Carnot engine depends on
 - A. Working substance
 - B. Design of the engine
 - C. Size of engine
 - D. Type of fuel fired
 - E. Temperatures of source and sink

- 6. If $\Delta G^{\circ} < 0$, then K is _____. If $\Delta G^{\circ} > 0$, then K is _____. If $\Delta G^{\circ} = 0$, then K is _____.
 - A. > 1, < 1, = 1
 - B. <1, >1, =1
 - C. < 0, > 0, = 0
 - D. > 0, < 0, = 0
 - E. <1, >1, =0
- 7. The $\Delta H_{sublimation}$ of I_2 is 60.46 kJ/mol, while its $\Delta H_{vaporization}$ is 41.71 kJ/mol. What is the ΔH_{fusion} of I_2 ?
 - A. 102.17 kJ/mol
 - B. 102.17 kJ/mol
 - C. 18.75 kJ/mol
 - D. 18.75 kJ/mol
 - E. Insufficient information
- 8. When a conductance cell was filled with 0.0025 M solution of K_2SO_4 , its resistance was 326 Ω . If the cell constant is 0.2281 cm⁻¹, the conductivity (in Ω^{-1} cm⁻¹) of K_2SO_4 solution is
 - A. 4.997 x 10⁻⁴
 - B. 5.997 x 10⁻⁴
 - C. 7.997 x 10⁻⁴
 - D. 3.997 x 10⁻⁴
 - E. 6.997 x 10⁻⁴
- 9. Which of the following expressions is correct?
 - A. $\Lambda_o \left(A l_2 (SO_4)_3 \right) = 3 \lambda_o^+ (A l^{3+}) + 2 \lambda_o^- (SO_4^{2-})$
 - B. $\Lambda_o(Al_2(SO_4)_3) = \lambda_o^+(Al^{3+}) + \lambda_o^-(SO_4^{2-})$
 - C. $\Lambda_o(NH_4OH) = \Lambda_o(NH_4Cl) \Lambda_o(NaCl) + \Lambda_o(NaOH)$
 - D. $\Lambda_{o}(\text{FeSO}_{4}) = 2\lambda_{o}^{+}(\text{Fe}^{2+}) + 2\lambda_{o}^{-}(\text{SO}_{4}^{2-})$
 - E. $\Lambda_o(NH_4OH) = \Lambda_o(NH_4Cl) \Lambda_o(NaOH) \Lambda_o(NaCl)$

10. The decomposition of $N_2O_5(g) \rightarrow NO_2(g) + NO_3(g)$ proceeds as a first order reaction. Which equation below best gives the concentration of N_2O_5 versus time profile?

A.
$$[N_2O_5] = \frac{[N_2O_5]_0}{t_{0.5}}$$

B.
$$[N_2O_5] = kt$$

C.
$$[N_2O_5] = [N_2O_5]_0 e^{-kt}$$

D.
$$\frac{1}{[N_2O_5]} = \frac{1}{[N_2O_5]_0} + kt$$

E. Any of the above

SECTION B [80]

There are FOUR questions in this section. Answer all Questions.

QUESTION 1 [14]

State whether each of the following statements is **true** or **false**. If false either correct it or state briefly the reason for its being false.

- (a) $w = \oint dw = 0$ and $\Delta H = \oint dH = 0$
- (b) The compressibility factor, Z > 1 for many gases at high pressures is attributed to finite size of gas molecules and repulsive forces.
- (c) $\Delta H_{combustion} = \Delta U_{combustion}$ for the combustion reaction $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$
- (d) For the reaction 2C(g) + O₂(g) \rightarrow 2CO(g), $\Delta H_{reaction}^{o} = \Delta H_{f}^{o} \left(CO \left(g \right) \right)$
- (e) For a perfect crystalline substance, $S_{0^{\circ}C} = 0$.

(f)
$$\left(\frac{\partial G}{\partial P}\right)_T = V$$
 and $\left(\frac{\partial \Delta G}{\partial T}\right)_P = -\Delta S$

(g) According to Trouton's law, the entropy of vaporisation at normal boiling point of benzene (C_6H_6) and water is approximately equal to 88 JK⁻¹mol⁻¹.

QUESTION 2 [13]

- (a) State whether q, w, ΔU , ΔH and ΔS are positive, negative or zero in adiabatic compression of an ideal gas. (5)
- (b) A sample consisting of 2.00 mol argon (assume to behave as ideal gas) is expanded reversibly and isothermally at 0° C from 22.4 dm³ to 44.8 dm³. For this process, calculate q, w Δ U and Δ H.

QUESTION 3

[**13**] (3)

(a) Estimate the enthalpy change of formation for NH₃(g) at 100°C given:

$$\frac{1}{2}N_{2}(g) + \frac{3}{2}H_{2}(g) \rightleftharpoons NH_{3}(g)$$
, $\Delta H_{f}^{o}(25^{\circ}C) = -46.11 \text{ kJmol}^{-1}$

$$C_p(N_2, g) = 29.12 \text{ JK}^{-1}\text{mol}^{-1}$$

$$C_p(H_2, g) = 28.82 \text{ JK}^{-1}\text{mol}^{-1}$$

$$C_p(NH_3, g) = 35.06 \text{ JK}^{-1}\text{mol}^{-1}$$

- (b) Calculate ΔG° for 1 mole of N₂O₄ decomposition at 298 K, given K_p = 0.163. If ΔS° for the reaction is 184.2 JK⁻¹mol⁻¹ at 298 K, calculate ΔH° at 298 K. (3)
- (c) The equilibrium constant of the reaction

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$

was determined as a function of temperature and the data was fitted using the linear form of the van't Hoff isochore and the result was:

$$\ln K_p = \frac{14080}{T} + 17.85$$

Use these results to obtain ΔH° , ΔS° and ΔG° .

(4)

(d) Is the reaction in (c) above endothermic or exothermic? Give a reason for you answer. Which linear plot A or B in the diagram below best represents this reaction? (3)

1/T

QUESTION 4 [20]

- (a) Explain briefly why **conductivity**, κ , is not the most convenient quantity to use for the study of electrolytic conduction. (2)
- (b) The molar conductivities at infinite dilution (in Ω^{-1} cm²mol⁻¹) of NaCl, HCOONa and HCl are 126.4, 104.6 and 426.1, respectively, at 25°C. The molar conductivity of the carboxylic acid, HCOOH, at a concentration of 0.100 M is 50.5 Ω^{-1} cm²mol⁻¹. Calculate the following:

(i) molar conductivity at infinite dilution,
$$\Lambda_0$$
, of HCOOH. (2)

(ii) dissociation constant K_a and the pH of the acid solution. (6)

- (c) State the two functions of a salt bridge in an electrochemical cell.
- (2)(d) Given the following electrochemical cell notation

$$Pt|Ti^{3+}(0.1m), Ti^{4+}(0.1m)|Cu^{+}(0.1m)|Cu(s)$$

- Deduce the overall chemical reaction of the electrochemical cell. (2)(i)
- If the emf of the cell, E_{cell} , is 0.442 V at 25°C, calculate ΔG , ΔH and ΔS for the (ii) reaction if the temperature coefficient of the emf is $-1.25 \times 10^{-4} \text{ VK}^{-1}$ at this (6)temperature.

[20] **QUESTION 5**

(a) What is the overall order of the reaction described by each of the rate expressions below? State the units of the rate coefficient of the rate is in moldm⁻³s⁻¹.

(i) Rate =
$$k \frac{[A]^{1.5}}{[B]^{1.5}}$$
 (ii) Rate = $k[A][B]^{0.5}[C]^{1.5}$ (4)

(b) Nitrogen pentoxide (N₂O₅) gas decomposes according to the reaction

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

At 328 K, the rate of the reaction under certain conditions is $0.75 \times 10^{-4} \text{ molL}^{-1}\text{s}^{-1}$. Assuming that none of the intermediates have appreciable concentrations, determine the values of:

(i)
$$\frac{d[N_2O_5]}{dt}$$
 (ii) $\frac{d[NO_2]}{dt}$ (iii) $\frac{d[O_2]}{dt}$ (6)

(c) The rate of a reaction $A \rightarrow Product(s)$ is given by

$$-\frac{d[A]}{dt} = k[A]^2$$

- Derive the integrated rate law equation and state assumptions involved. (7)
- Deduce the expression for the half-life of A showing your working. (3)(ii)

END OF EXAM

LIST OF USEFUL EQUATION AND CONSTANTS

Van der Waals eqⁿ.
$$P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2} = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2}$$

8.314 J K⁻¹ mol⁻¹ Universal Gas constant R $1.381 \times 10^{-23} \text{ J K}^{-1}$ k Boltzmann's constant, = 6.626 x 10⁻³⁴ J s h Planck's constant = $0.509 \text{ (mol dm}^{-3})^{1/2} \text{ or mol}^{-0.5} \text{kg}^{0.5}$ Α Debye-Hückel's constant, = 96485 C mol⁻¹ Faraday's constant F = 9.109 x 10⁻³¹ kg Mass of electron m_e = 2.998 x 10^8 m s⁻¹ Velocity of light С 6.022×10^{23} Avogadro's constant N_A 1.602 x 10⁻¹⁹ J 1 electron volt (eV) =